
The Garden: Evolving Warriors in Core Wars

David G. Andersen

August 23, 2001

Abstract

The Garden is a new architecture for evolving Core Wars programs, short, assembly-language like
creatures which battle in a simulated computer environment. With an agressive direct-compilation
scheme, the Garden avoids nearly all external overhead for evaluating Core Wars programs. The
resulting eÆciency allows us to explore and compare di�erent evolutionary methods at a scale (thou-
sands of warriors) and number of generations (hundreds) that is nearly an order of magnitude more
in-depth than previous research. By harnessing the speed of the Garden architecture, we are able
to compare a number of di�erent evolutionary strategies (initial seeding, evaluation, and mutation
methods and parameters) in a quantitative manner.

1 Introduction

The Core Wars system [4] is a simulated linear array memory computer designed originally by A. K.
Dewdney in 1998. In basic core wars, two assembly language programs attempt to survive the longest
in this array, by moving, replicating, and forcing the other program to execute an invalid instruction.
The program which survives the most out of some number of runs is declared the \winner." Core
wars programs are written in an assembly-like language called Redcode [5]. Redcode is a reasonably
simple, complete assembly language, with a few addressing modes and a small set of arithmetic and data
manipulation operations.

Core Wars provides an interesting middle-ground for evolving arti�cial life. It is far more fragile than
a system like Tierra [1], but much more robust than the assembly languages found in real computer
systems, and it provides a built-in �tness function (winning).

1.1 Core Wars details

It is necessary to understand a bit about the Core Wars system to understand the way in which evolved
creatures behave. Core Wars takes place in a simulated computer with a linear array of memory which
wraps around, usually with 8000 cells. The programs are put into the array at random locations, and take
turns executing one assembly instruction each. A basic but complete set of instructions are provided,
like MOV, DIV, MOD, ADD, SUB, as well as some ow control instructions CMP, SEQ (split if equal), etc.

Programs may also \fork" control with the split (SPL) instruction, so that they have multiple inde-
pendently executing processes. These processes share time in round-robin fashion within one warrior's
turn, so forking doesn't get you any more time to run your instructions - but if one process dies, then
your other processes will keep running.

A warrior \wins" a battle by killing all of its opponents processes. A process dies by executing an
invalid instruction, typically a DAT (data) instruction. Common strategies in Core Wars, then, involve
placing DAT instructions into memory at locations inside the opponent's code. Some common, simple
strategies used often in core wars include:

1

� Imps have a single instruction, MOV 0, 1 which copies the imp to the next location in memory,
which executes next. They move through memory and turn other programs into imps. They cannot
win, but frequently tie.

� Bombers blindly \bomb" DATs through memory, avoiding themselves but rapidly hitting many
memory locations.

� Scanners examine memory for the telltale instructions of othe programs, and then overwrite large
chunks of memory in that region.

� Papers replicate themselves into other parts of memory and have multiple copies running at a
time. They disrupt other program's code when they hop in to them.

Most evolved programs are bombers or papers, two strategies which evolve quite simply and require
little coordination between functional units in the program.

1.2 Evaluating warriors

There exists no oÆcial standard for how to evaluate the \�tness" of a Core Wars program, or \warrior."
However, two unoÆcial methods have emerged: The Wilkies Benchmark, and the King of the Hill com-
petition. In almost all Core Wars competition, warriors are awared 0 points for losing a battle, 1 point
for a tie, and 3 points for winning a battle. (This helps encourage winning strategies rather than simple
survival strategies).

1.2.1 The Wilkies Benchmark

The Wilkies Benchmark consists of a set of 12 hand-selected warriors from past core wars competitions.
A test warrior �ghts 100 battles against each of these warriors, and their resulting score is averaged
(divided by 12) to determine a number between 0 and 300. Most decent human coded warriors have little
trouble scoring over 100 on the Wilkies benchmark, but to date, no evolved program has done so.

1.2.2 King of the Hill

King of the Hill is a semi-realtime on-line competition of Core Wars programs. Authors submit their
warriors to the competition, and the new warrior �ghts against each warrior on the hill. From these
battles, it is given a \hill score," and if its hill score is high enough, it is inserted into the hill, displacing
the lowest-scored program on the hill.

In times past, there was a \beginners" hill where people frequently tested evolved warriors, but this
hill no longer exists. No purely evovled core warrior is good enough to take even the bottom rung of
the standard core wars hills, though one warrior on the standard hill has several parameters which were
determined via a genetic algorithm.

2 Related Work

Other experiments in this area are have been performed, but all report only moderate success. The ap-
proaches taken thus far fall into certain categories. We can categorize the Core Wars evolution method-
ologies on a few axes.

2.0.3 Initial seeding

A core-wars program can be seeded completely randomly (as is done in GA-war [2]), or it can be seeded
with non-functional patterns (For instance, [7] seeds the individuals with 4 initial \split" instructions to
increase the modularity and robustness of the evolved individuals).

2

Finally, the evolution programmay be seeded with fully functional warriors. One warrior in the current
\King of the Hill" tournament features a human-coded warrior whose parameters (spacing, number of
children, etc) were genetically evolved.

2.0.4 Mutation and reproduction methods

Change in the code can be induced by point mutations, point crossovers, multpoint crossovers, or a
block-based crossover scheme (in which the code is divided up into blocks of speci�c size, and crossovers
occur between those blocks). Each of these results in changes occuring at di�erent granularities, and may
result in di�erent types of o�spring.

Similarly, the space into which a creature may breed will a�ect how new code spreads. Reproduction
may be localized to adjacent neighbors (as in Redmaker [8]), allowed to propagate throughout the entire
pool of organisms, or constrained to a speci�c \pool" of organisms.

2.0.5 Evaluation methods

Evaluation can occur by internal or external competition. With external competition, each warrior in the
soup is tested against an external battery of (usually human-coded) warriors, and the score that results
is their �tness.

Internal competition can occur in a variety of ways. In general, warriors are tested against other
evolved warriors. It can be handled in an exhaustive competition (all warriors against all warriors), a
random subset competition, or a \king of the hill" style competition where the best warrior from each
generation moves onto the hill. Exhaustive internal competition requires O(N2) tests, but in theory
provides the best �tness score. The other mechanisms attempt to approximate the best �tness score with
much lower e�ort.

2.1 Categorization of related work

Name Seeding Mutation Reproduction Evaluation

Perry Hand-coded Point, Multipoint crossover Single generation Internal pairs
GA-War Random Point, Line Global replacement Internal Subset
Sys4 Random Point Neighbor replacement Neighbor combat
RedMaker Random Point, Line Global replacement Random global
Hillis 4 SPL at start point, crossovers: 1-point, Global replacement External battery,

1-point-block Internal KOTH
Garden Random Point, multipoint crossover Global replacement External battery,

N SPL at start internal exhaustive
Real code internal KOTH,

or combination
The initial work in this area, by John Perry [9], used only a single generation brewed from existing

warriors to attempt to improve them by mutation and crossover. Unfortunately, his generations took a
full day to run with a few hundred warriors, and so the work was not continued or explored from purely
random warriors.

The GA-war system allows point mutations to existing code, and the insertion or deletion of random
lines. It uses global replacement - warriors �ght a subset of other warriors and the winners replace the
losers. It and the Sys4 tool are the most \arti�cial life" like of all of the programs discussed herein -
they both have some form of localization. Sys4 goes even farther, allowing warriors to compete only with
their neighbors in a two-dimensional grid. Unfortunately, both of these programs su�er from somewhat
limited mutation and evaluation capabilities.

Hillis has what is likely the most sophisticated evolution program to date. It's derived from GA-war,
but allows crossover mutations, and adds a \block" granularity to the programs and their mutations:
programs are started with an initial set of \SPL" instructions to the block boundaries within the program.

3

These blocks are then subject to block-based crossovers. (The whole warrior is also subject to single-
point crossovers). Through the imposition of this amount of external structure, Hillis reports the most
�t evolved warriors in the literature.

3 The Garden Architecture

The Garden is unique among Core Wars evolutionary schemes in that it does not use external invocations
of the popular pmars core wars simulator for evaluating its warriors. Instead, the Garden incorporates
the execution code from pmars into its own system. Programs used for evaluation in the external or
internal batteries are only assembled once, and are then stored in already-assembled form in memory.
Instead of writing evolved programs to �les and then evolving them, the Garden assembles them directly
from their internal genetic representation to pmars-executable warriors, and again, only performs this
assembly step once per warrior per generation.

Surprisingly, though everything the Garden does is stored in memory, its storage requirements are
very modest - only 2.5MB for an instance which is evolving a pool of 1000 warriors, several times larger
than other systems have handled in the past.

3.1 Initial Seeding

Initial seeding in the garden can occur in one of three ways. The most basic mechanism is purely random
generation of individuals. This results in a pool with a reasonably low level of �tness, though occasionally
an individual will make a lucky series of SPLits or JMPs that allow it to survive a battle by pure luck.

The next mechanism emulates the modular evolution in Hillis, with a twist. Individuals are randomly
generated, but their �rst N instructions (N is typically 4 in the experiments I've run) are SPL instructions
to other locations in the warrior. At present, I use only random locations, and do not emulate the block-
based crossover which goes along with this approach in Hillis' work, but it provides a way to determine
if the bene�t in [7] comes more from the block-based modularity or the simple presence of initial splits.

Finally, we can take input from whole or fractional existing warriors. These inputs can be combined
in part; for instance, chunks of fractional existing warriors may be combined with 4-split initial warriors.
Unfortunately, combinging entire warriors with randomly generated input simply results in the entire
warriors rapidly taking over the entire pool, since their �tnesses are vastly greater than those of the
evolved creatures, even after several generations.

3.2 Genetic Representation

The genetic representation used in the Garden is deliberately simplistic, and is conceptually very close to
the actual phenotype of garden warriors. This was a deliberate choice to avoid adding accidental structure
to Garden warriors via a biased choice of genetic representations. In addition, the slight fragility of an
assembly language makes it a particularly interesting environment in which to attempt to evolve programs;
as we will see later, many of the resulting programs are surprisingly robust to mutation even though they
consist of unsophisticated assembly instructions.

A gene in the Garden has an instruction component, a �rst argument and mode, and a second
argument and mode { just like the corresponding assembly instructions. However, instruction and mode
representations are packed densly in the gene, so that any single bit change will always result in a valid
(though perhaps nonsensical!) instruction.

Creatures consist of a �xed array of genes. While the creature may load many instructions into the
Core Wars array, it does not necessarily execute these instructions; therefore, the \useful" length of an
evolved Core Warrior may in fact be considerably shorter than its \observed" length. However, the extra
length can frequently be useful - many human-coded opponents take up considerable extra space with
dummy instructions designed to hide them from warriors which scan the memory space for opponents.

4

Mutation

Reproduction
and Mutation

Pool of
evolved
warriors

Initial popluation
generation

best

worst

Fixed External Battery

Dynamic Internal Hill

Full N*N Internal Competition

Test type
weights

Compound

Score

Sorted Array
(by compound
score)

Generation Evaluation

(single or
Crossover

multipoint)

Figure 1: An overview of the Garden architecture.

3.3 Overall Architecture

The general pattern taken by the Garden is identical to most genetic evolution programs:

1. Generate an initial population

2. Evaluate the population by some metrics

3. Reproduce (with mutation) in a way that rewards more �t individuals.

4. Repeat with evaluation.

The actual structure of the Garden is shown in �gure 1.

3.4 Mutation methods

Mutation in The Garden is handled by one of three methods:

� \Cosmic-ray" style point mutations to all individuals

� Point mutations upon reproduction

� Single or multipoint crossovers upon reproduction

5

The probabilities of each of these types of mutation is controllable, but the exact settings matter little
- the random noise between runs results in far larger di�erences than do surprisingly large parameter
changes.

Some common mutation parameters I use:
parameter value

Chance of sexual reproduction (crossovers) 10%
Mutating a subgene on reproduction :1� :9% (1% - 4.5% for whole gene)
Cosmic ray random mutation probability 0 %

On average, these probabilities result in between a 50 and 80% chance that a child of reproduction
will be mutated, but parents typically survive unscathed. (In addition, it provides a relatively gaussian
distrubtion for the number of mutations a child gets, centered around three. Rare children receive up to 10
mutations, allowing for signi�cant change, but most children receive only a small number of mutations).

3.5 Evaluation methods

The Garden has an extremely exible evaluation infrastructure, with ideas borrowed from many existing
systems. It allows a variety of both internal and external competition.

External competition is provided in an obvious \battery" form, where individual warriors �ght a
speci�ed number of rounds against each warrior in the external battery. The number of battles per
individual per generation is thus N (the number of warriors in the battery) * B (the number of battles
per per warrior). Typical values for these numbers are 12 to 17 for di�erent sets of benchmark warriors,
and 10 to 20 battles per warrior.

Internal competition is provided by one of two methods. First, the Garden supports a \King of the
Hill" style for internal competition, similar to that found in Hillis. In this mechanism, a smaller number
of individuals are pulled together to form an initial \hill," and engage in an N*N competition between
each other to establish their hill scores (the sum of their score against each other warrior on the hill). To
evaluate warriors, they battle each member of the hill, and receive a tentative hill score, used to sort the
warriors. The best warrior of the pool is then re-tested against the hill with a larger number of battles,
to reduce initial placement noise. If their score is suÆciently high, they are placed on the hill, displacing
the worst previous warrior on the hill. The king of the hill is a nice approximation to combat against the
entire pool, because it maintains suÆcient history that it doesn't always �ll up with \the best" warriors.

Finally, the Garden can compete warriors against all other warriors in an exhaustive competition.
Due to the O(N2) scaling of this, this is only practical for populations of 100-200 individuals.

3.6 Reproduction

Reproduction in the Garden is handled on a global basis. The most successful individuals reproduce
into random spots in the population, probabalistically displacing the less-�t individuals. The actual
reproduction is handled by copying the top F individuals (where F � the number of individuals in the
population), and starting from the least �t of these individuals, each warrior has K children which are
inserted into the population. The best warriors reproduce last, meaning their children have a higher
probability of remaining in the population; the worst warriors may not get a chance at all to breed. This
results in the expected drift towards individuals with higher �tness, as we show in �gure 2.

4 Performance

The Garden architecture achieves extremely high performance relative to other, similar systems. On a
PII-600, we perform a single-pair check in about 15ms, including time to assemble. The fastest earlier
work [7] used a Sun ultrasparc 2, and performed a single-pair check in over 400ms. The ultrasparc 2
is 2-3x slower than the PII-600, meaning that the Garden architecture is about an order of magnitude
faster than previous architectures.

6

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

"average-fitness"
"maximum-fitness"

Figure 2: Average and maximum �tness by generation. Scores are for 10 iterations against the Wilkies
benchmark. Note the considerable noise in the scores with such a relatively small number of tests.

The time to perform a single round battle varies with the warriors involved; the worst-case scenario
is a tie, where all 8000 turns must be played out. This worst-case behavior is seen most often when
competing evolved warriors against other evolved warriors, because they frequently resort to simple
survival strategies and tie.

Unfortunately, this performance is still relatively slow compared to the number of executions required
to evaluate a generation. The smallest realistic simulation of 50 individuals and a static battery of 12
individuals (the Wilkes benchmark) requires about 80 seconds to evaluate a generation.

Pro�ling experiments with the Garden show that over 98% of the execution time of the Garden is
spent in actually evaluating core warrior instructions. Within this time, there are no glaring bottlenecks.
Unfortunately, this means that to achieve even higher performance than the Garden, future architectures
will need a vastly di�erent Core Wars instruction emulation architecture.

5 Results

With the Garden, we evolved several hundred di�erent warriors with moderate degrees of �tness. Figure
3 shows one early-stage evolved warrior, and compares it with an advanced scanner/bomber warrior.
There are structural similarities in the bombing loops used by the evolved warrior and Rave, but Rave is
much more optimized. In time, the evolved warrior's bomb loop will become tighter as extra instructions
are deleted, but it will likely not evolve the advanced scanning behavior which allows Rave to perform so
well.

5.1 Robustness of Genetic Algorithms

The most interesting result of writing the Garden was not a warrior: It was a lesson about the robustness
of genetic algorithms. I ran experiments for about three weeks with a major error in the mutation
procedure which resulted in a 99:99% mutation rate for individuals not subject to crossover (at that
point, 33% of the individuals were instead subject to crossover). Therefore, evolution due to point
mutation was virtually nil. However, the crossover functionality, combined with a great deal of random
genes available in the population, the multipoint crossover functionality served to approximate point
mutation surprisingly well: Individuals were able to achieve scores on my custom benchmark of about
110, compared to 120 without the bug.

This is, of course, a rather embarassing discovery to write about, but the results are rather fascinating.

7

Evolved Ev2 Rave

> SPL #-52, $109 SPL #-52, $109 scan: SUB.F incr, comp

DIV #-48, >-5 MOV *-96, #59 comp: CMP.I $125, $113

SEQ $127, @-101 SUB @37, *-88 SLT.A #24, $1

SEQ *25, #59 > SPL #-5, *5 DJN.F $-3, <-308

SUB @37, *-88 > DJN >-9, >-70 MOV #14, $2

> SPL <-52, *-42 DIV #17, @-74 split: mov.i bomb, >comp

> MOV >-9, >109 MOD >-9, >-70 count: djn.b split, #0

DIV #-50, *6 DIV #-50, *8 sub.ab #BOMBLEN, comp

SEQ >21, *17 SEQ <21, *17 jmn.b scan,scan

MOD @-89, @114 DAT @-4, @114 bomb: spl.a 0,0

mov.i incr, <count

incr: dat.f <-42, <-42

Figure 3: Two warriors of short length, one evolved (on the left) and one high-performance hand-coded
warrior, Rave. Note the similarities between the \bomb" mechanism in Rave (SPL, mov, die) and the
SPL, MOV pair in the evolved warrior which has very similar functionality. The evolved warrior bombs
through memory. Only the three instructions marked with a > are important to the evolved program's
functionality; the rest are e�ectively no-ops. This program is in an early stage of evolution. Ev2 shows
it 20 generations later, where its bomber loop has moved closer towards the beginning of the program,
and it bombs much more quickly.

Similarly, varying the mutation rate within a reasonable range (a few mutations per organism per
generation) had very little e�ect on the �tness of the resulting organisms, and little e�ect (e.g. it was in
the noise between runs) on the time required to achieve a particular �tness. While these parameters may
in fact have some e�ects, the noise in the system because of the \luck" required to evolve good warriors
is far larger than the changes from di�erent mutation rates.

5.2 Importance of instruction mix

As has been widely suggested about the Tierra system, the choice of operators is quite critical to the
success, or lack thereof, of an evolutionary system. In particular, certain instructions in the Core Wars
system provide a \short path" to a relatively successful strategy. The most stunning example of this
are the autoincrement and autodecrement addressing modes, in which executing an instruction has a
side-e�ect of incrementing or decrementing one of its operands.

These two operands make it much easier for a Core Wars program to perform iterative operations,
because it vastly reduces the complexity of a loop required. The e�ects of these instructions can be seen
clearly in �gure 4, which was run with 1000 individuals for 30 generations. The di�erence in peak starting
�tness is extremely noticable.

5.3 Utility of modularity: Initial SPL instructions

Hillis' idea of inserting additional SPLs at the beginning of a warrior has immediate bene�ts for the
robustness of the resulting organism: With 4 immediate program \forks", the program is immediately
much more likely to jump to a \stable" piece of code. However, without the additional structure imposed
by the block-based crossover, the initial SPLs do not seem to have an overwhelming e�ect upon the
long-range scores achievable by the evolved organisms.

In �gure 5, we show a comparison of four runs of the Garden, two with initial SPL seeding, and
two without. It is immediately obvious that the SPL instructions provide a higher survival rate for

8

0

20

40

60

80

100

120

140

160

5 10 15 20 25

F
itn

es
s

V
al

ue

Generation

Extended set: avg
Reduced set: avg

Extended set: max
Reduced set: max

Figure 4: Avg. and Max �tness by generation for two runs of the program. The �rst has a normal
instruction mix with no increment addressing, and the second (extended) has the preinc and postdec
operators, and achieves much higher �tness.

early populations, but the data becomes too noisy due to random evolutionary leaps to draw conclusions
about their long-term e�ects. The graphs are for populations of 1000 individuals, run for 24 hours on a
quad-processor 200Mhz Pentium Pro.

The more formal structure used by Hillis, with jumps to boundaries along which crossover occured,
results in considerably higher �tnesses than I achieved without this structure, even with the SPL instruc-
tions. In e�ect, Hillis was specifying that his creatures consisted of 4 independent modules which evolved
separately. While a similar SPL-based structure often evolved in my experiments, the mutation was not
keyed to these block units, so they did not evolve their functionality separately.

5.4 Importance of Evaluation Criteria

The evaluation criteria used are quite important, and interact with the instruction mix choices. Exper-
iments run with full internal competition and \King of the Hill" (KOTH)-style competition without an
external battery and no access to the extended addressing modes frequently failed to evolve anything
past the \survive" stage (e.g. warriors which simply executed the same instruction over and over with
no external e�ects). In contrast, in a run of 50 warriors bred with the extended addressing modes, a
stable warrior evolved in the �rst generation which bombed some locations of the core. In the second
generation, the \winner" was a simple single-instruction JMP loop (totally stable but boring). How-
ever, by generation 3, it had evolved into a combined \stable looper" and core-bomber, and was able
to achieve a Wilkies benchmark score of 14 - quite low, but higher or equal to the scores of individuals
evolved through over a CPU-week of internal competition without the extended instruction mix. This
compares extremely favorably with a population of 100 warriors bred for four days (88 generations),
the best warrior of which was completely stable, but achieved a Wilkies benchmark score of only 4.5 -
far less than 10 minutes of evolution of a smaller population with a better instruction mix.

In contrast, warriors evolved using an external battery were able to achieve sophisticated attack
strategies without access to the extended addressing modes. This interplay between the initial sets and
the evaluation function is indicative of the di�erent evolutionary \humps" a warrior needs to get over
to survive. With an internal battery, simple survival represents a huge point gain, with additional wins
occuring rarely and resulting in small gains. In contrast, a simple \sit around" strategy does not perform
well with an external battery, so organisms must evolve more advanced strategies to survive.

9

0

10

20

30

40

50

60

0 5 10 15 20 25

F
itn

es
s

Generation

SPL run 1
SPL run 2

Random run 1
Random run 2

Figure 5: Average generational �tness for populations seeded with 4 SPL instructions, and without. The
initial bene�ts of the SPL instructions are clear, but the long term bene�ts without block-based crossover
are in doubt.

5.4.1 Directed Evolution: A single competitor

Not surprisingly, evolutionary methods can be extremely e�ective when targeting a single opponent. For
this experiment, I picked the \rave" warrior, an advanced \scanner" type warrior which looks through the
core to �nd its opponent, and then blasts the area where it �nds it. Nearly all of the warriors evolved in
either internal competition or with a larger extenal battery fail completely against Rave, losing 80-100%
of the battles against it. However, a warrior evolved from purely random initialization designed to �ght
rave can do very well - winning 50% of the time, and tying another 30% of the time. The evolution of
this warrior is shown in �gure 6.

Interestingly enough, though this warrior was evolved speci�cally to �ght against a single competitor,
it still performs reasonably well overall, achieving a Wilkies benchmark score of 57. Its strategy, however,
is simple, and its adaptations are primarily in the form of matching the length of the executing Rave
code, and bombing in a pattern designed to rapidly detect Rave. The execution of the program can be
seen in Figure 7.

6 Discussion

In this section, we discuss briey the suitability of genetic evolution within the Core Wars framework.
We list those features of Core Wars which facilitate evolution, and those which push the system towards
the evolutionary dead-ends frequently encountered in this work and others.

On the positive side, it is possible { and even desirable { to construct organisms which are robust to
changes in their instructions. Because combat in Core Wars operates by changing the code executed by
an enemy (sometimes to purely invalid instructions like DAT and sometimes simply to unexpected code),
an organism which can handle changes in its code { its gene sequence, if you will { is also likely to be
more robust against certain types of attacks. Evolutionary approaches are likely to lead to organisms
with this quality. In almost all runs, mutating an individual rarely causes it to immediately terminate,
but instead simply reduces its �tness by some amount (e.g. its �tness does not drop immediately to zero
simply by zapping a few instructions). This is likely an o�shoot of the \split" based loops that frequently
evolve, since they're as likely to come about as a JMP based loop.

On the downside, Core Wars is a reasonably sequential environment. While the SPL operation allows
multiple processes to continue executing, the basic structure of Core Wars provides nothing which makes

10

0

50

100

150

200

250

0 50 100 150 200 250 300

F
itn

es
s

(s
um

 o
f 1

00
 b

at
tle

s)

Generation

"average"
"maximum"

Figure 6: Directed evolution against the \rave" warrior

the execution of parallel, independent processes easy - they must be synchronized by their execution
time requirements, which are predictable. Since evolutionary approaches work well with more modular
systems (extending the length of an arm without inducing red-green color blindness, for instance), and
successful Core Wars warriors are frequently very tightly integrated, it is not too surprising that pure
evolutionary approaches fail to produce excellent warriors.

All current approaches to Core Wars evolution are somewhat lacking in emulating the rich diversity
of environments available in the real world. From evolutionary biology [6], we know that geographic
separation is a strong factor in speciation and the resulting genetic strength and diversity of the pop-
ulation. Additionally, without breeding barriers or other forms of balancing selection, current Core
Wars frameworks frequently fail to evolve the kinds of \evolutionary arms races" [3] which fuels intense
interpopulation growth.

7 Conclusions and future work

Core Wars provides an interesting middle ground for evolutionary systems. It is far more fragile than
most systems designed to explore evolution, but less fragile than true computer programs. The Garden
architecture for Core Wars evolution is more than an order of magnitude faster than previous evolutionary
systems, and by taking advantage of this speedup { and advances in processor speed { we were able to
explore several di�erent evolutionary approaches to generating Core Wars warriors.

11

Figure 7: The middle of bombing by the anti-rave evolved warrior. The warrior is executing in the
upper left hand, and the bombing is shown by the lines slanting down and to the left. The bombed lines
crisscross the memory array with a pattern which kills the Rave warrior quickly.

In this work, we show the importance of the instruction mix made available to Core Wars programs:
the addition of addressing modes and instructions can vastly change the �tness of the evolved warriors,
and in fact makes a much larger di�erence than larger pools of creatures or more generations. In a similar
vein, we also show the e�ect of encouraging a modular approach with initial SPL instructions, a middle
course between pure evolution and more structure-based evolution.

As a next step, we plan to extend the Garden's evolutionary mechanisms to directly support the block-
based evolution of Hillis, and produce similar side-by-side comparisons of this approach. In addition, it
would be valuable to explore other mixes of instructions than those discussed herein. As the block-based
approach produces the strongest known warriors { better, even, than those produced by pure evolution
with nearly 100x more creature-time (population size and length of run), this comparison should prove
quite enlightening, since the basic SPL approach does not yield huge long-term bene�ts on its own.

Finally, as an accidental byproduct of bugs during the development of The Garden, our results show
the surprising resilience of evolutionary approaches: even when we accidentally killed 66% of the children
each generation and failed to provide point mutations, evolution proceeded and resulted in entities nearly
as strong as those generated by the correct algorithm, though they took longer to evolve.

References

[1] An approach to the synthesis of life. In Langton, Farmer, and Rasmussen, editors, Arti�cial Life II,
pages 371{408. Addison-Wesley, 1991.

[2] J. Boer. Ga war source code. http://www.avalon.net/~jboer/projects/corewar/ga_war.c, 1997.

[3] R. Dawkins. The Blind Watchmaker. W. W. Norton and Company, Inc., 1986.

[4] A. K. Dewdney. The Armchair Universe: An Exploration of Computer Worlds. H. Freeman, 1988.

[5] M. Durham. Annotated draft of the proposed 1994 core war standard.
http://www.koth.org/info/icws94.html, 1994.

[6] D. J. Futuyma. Evolutionary Biology. Sinauer Associates, Inc., 1986.

[7] D. Hillis. Evolving core warriors. http://nc5.infi.net/~wtnewton/corewar/evol/evolving.txt,
1998.

12

[8] T. Newton. Evolved core-warriors. http://nc5.infi.net/~wtnewton/corewar/evol/index.html,
1998.

[9] J. Perry. Core wars genetics: The evolution of predation.
http://www.cs.ucla.edu/ jperry/corewars.html, 1991.

13

